Libros ciclos formativos, grado superior de informática, ASIR, DAM, DAW, libros universitarios: libros ingeniería aeronáutica, libros ingeniería civil, ingeniería de caminos: ingeniería construcción, ingeniería sanitaria, ingeniería del transporte, ingeniería hidráulica, territorio, urbanismo, materiales de construcción, libros ingeniería geológica: geotecnia, expresión gráfica, proyectos, libros ingeniería mecánica: estructuras, resistencia de materiales, libros ingeniería eléctrica, libros ingeniería electrónica: labview, libros termodinámica, libros de electricidad, libros de construcción, libros arquitectura, libro de ciencias: matemáticas: álgebra, cálculo, matemáticas avanzadas, estadística, probabilidad, big data, tratamiento de datos, econometría, química, física, libros contabilidad, PGC, libros finanzas, organización empresas, marketing, libros economía, libros ciencias sociales, libros educación infantil, libros técnicos y reglamentos: eléctricos, construcción, libros informática, computación, libros ciencias de la salud

5% de descuento general para todos los libros
Técnicas estadísticas con variables categóricas IBM SPSS

César Pérez

Páginas: 332

Fecha: 2014

ISBN: 978-84-1545-293-5

Precio: 32,00€  30.40€ IVA incluido  

Material de apoyo

Recomienda este libro

Otros libros relacionados
Este libro profundiza en las técnicas estadísticas que utilizan variables categóricas, tanto descriptivas como predictivas. Es habitual tratar más asiduamente las técnicas que involucran variables cuantitativas, de modo que las técnicas con variables cualitativas o categóricas tienen una menor frecuencia de uso. No obstante, la importancia de estas últimas y su utilidad práctica suele incluso superar a las anteriores.

El texto comienza tratando las distribuciones de variables categóricas a través de las tablas de continencia, contrastes de independencia y medidas de asociación. A continuación, se presentan las técnicas de reducción de la dimensión con variables cualitativas entre las que destacan las técnicas de escalamiento óptimo que incluyen componentes principales con variables categóricas, análisis no lineal de correlación canónica y regresión categórica. En los capítulos siguientes se aborda el análisis de correspondencias simples y múltiples y los modelos logaritmo lineales. También se dedica una parte importante del contenido al análisis conjunto y a las técnicas de escalamiento multidimensional no métrico. Finalmente se profundiza en los árboles de decisión.

Las técnicas se ilustran con ejemplos prácticos resueltos con el software IBM SPSS. Al final de cada capítulo se presentan una serie de ejercicios secuenciados en orden de dificultad que permiten afianzar los conocimientos adquiridos.

CONTENIDO

    1. Variables categóricas: distribuciones de frecuencias
      1.1. Tablas de contingencia
      1.2. Distribuciones marginales y condicionadas
      1.3. Independencia y asociación de variables cualitativas. Coeficientes.
      1.4. SPSS y las tablas de contingencia

    2. Reducción de la dimensión con variables categóricas. Técnicas de Escalamiento óptimo.
      2.1. Escalamiento óptimo
      2.2. Análisis en componentes principales categórico
      2.3. Análisis no lineal de correlación canónica
      2.4. Regresión categórica mediante escalamiento óptimo

    3. Reducción de la dimensión con variables categóricas: correspondencias simples y múltiples
      3.1. Análisis de correspondencias
      3.2. Ejemplo de análisis de correspondencias simples
      3.3. Ejemplo de análisis de correspondencias múltiples

    4. Modelos logaritmo lineales
      4.1. Modelos log-lineales. Introducción y conceptos
      4.2. Tipos de modelos log-lineales
      4.3. Fases en la elaboración de modelos log-lineales
      4.4. El modelo logit log-lineal
      4.5. Modelos log-lineales con datos ordinales
      4.6. Tablas incompletas y ceros estructurales
      4.7. Naturaleza de los modelos log-lineales
      4.8. Independencia y asociación en modelos logarítmico lineales
      4.9. Estimación máximo verosímil de los parámetros del modelo
      4.10. Análisis de los residuos
      4.11. SPSS y los modelos logarítmico lineales

    5. Análisis conjunto
      5.1. Introducción al análisis conjunto
      5.2. Análisis conjunto en el esquema de métodos de reducción de la dimensión
      5.3. Módulo categorías de SPSS y procedimientos de reducción de la dimensión
      5.4. Fases del análisis conjunto según el método del perfil completo: procedimiento conjoint

    6. Escalamiento multidimensional no métrico
      6.1. Escalamiento multidimensional
      6.2. Tipos de escalamiento multidimensional
      6.3. Modelo de escalamiento métrico
      6.4. Modelos de escalamiento no métrico
      6.5. Modelo de escalamiento de diferencias individuales (indscal)
      6.6. Modelo de escalamiento desdoblado (unfolding)
      6.7. Modelo de escalamiento con replicación
      6.8. Modelos gemscal e idioscal
      6.9. Modelos para matrices asimétricas

    7. Árboles de decisión
      7.1. Árboles de decisión
      7.2. Características de los árboles de decisión
      7.3. Tipos de árboles de decisión
      7.4. IBM SPSS y los árboles de decisión

Libros técnicos y Reglamentos para profesionales, Ingenieros, Arquitectos e Instaladores del sector eléctrico (electricidad), construcción, climatización Contabilidad, Plan general de Contabilidad y Pymes. Libros para Ciclos Formativos y Programas de Cualificación Profesional Inicial, PCPI, de Peluquería e Informática. Libros universitarios de Ciencias, físico-química, químico-física, Ingeniería, Matemáticas, Estadística, Software SPSS

Política de Cookies

Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación.
Puede obtener más información consultando nuestra Política de Cookies y puede cambiar su configuración editando las Preferencias.

Cookies necesarias para el correcto uso de la web, como por ejemplo inicio de sesión, autenticación o seguridad.

Permiten medir, de forma anónima, el número de visitas o la actividad. Gracias a ellas podemos mejorar constantemente introduciendo mejoras en función del análisis de los datos de uso que hacen los usuarios del servicio.